(80 points total)

1. (10pts) Describe a control design approach suitable for achieving tracking control for each systems:

(10pts) Describe a control design approach suitable for achieving tracking control for each systems:	
$\dot{x} = \frac{1}{2}x_1^2 + \frac{1}{2}(x_1 - x_2)^2 + u$	Based on exact model knowledge , use feed-forward cancellation on the destabilizing terms $\frac{1}{2}x_1^2 + \frac{1}{2}(x_1 - x_2)^2$ and the derivative of the desired trajectory and add a stabilizing feedback term, x_d — x .
$\dot{x} = \sin(ax) + u$ where a is an unknown constant parameter	The nonlinear term sin(ax) is not linear parameterizable, use a robust controller for unknown term.
$\ddot{x} = 3\sin(x) + 2u$	Use the filtered tracking error, $r=\dot{e}+\alpha e$, to reduce the order of the tracking problem then design an exact model knowledge feed-forward and stabilizing control.
$\ddot{x} = b\sin(x) + u$ b is known constant parameter $\dot{x} \text{ is not measurable}$	Design observer for \dot{x} and then include in controller. Observation error and tracking error must be included in single Lyapunov function.
$\ddot{x} = f(x) + u$ where $f(x)$ is an unknown function of only x	Use filtered tracking error, $r=\dot{e}+\alpha e$, and design a robust controller.

2. (10pts) You have come to the point in your analysis where you find:

$$\dot{V} = -k_1 s^2 - x s - k_2 x^2,$$

finish the analysis by showing \dot{V} is negative semi-definite in either x or s (your choice). What are the conditions on k_1 and k_2 ?

$$\dot{V} = -k_1 s^2 - xs - k_2 x^2 \le -k_1 s^2 + |x||s| - k_2 x^2$$

$$\dot{V} \le -k_1 s^2 + |x||s| - k_2 x^2 = -k_1 s^2 + |x||s| - (k_2)|x|^2 = -k_1 s^2 + (|s| - k_2|x|)|x|$$

$$\dot{V} \le -k_1 s^2 + (|s|) \frac{|s|}{k_2} = -\left(k_1 - \frac{1}{k_2}\right) s^2$$

Choose
$$k_1 > \frac{1}{k_2}$$

A better solution is:

$$\begin{split} \dot{V} &= -k_1 s^2 - x s - k_2 x^2 \le -k_1 s^2 + \left| x \right| \left| s \right| - k_2 x^2 \\ \text{let } k_2 &= k_{21} + k_{22} \\ \dot{V} &\le -k_1 s^2 + \left| x \right| \left| s \right| - k_2 x^2 = -k_1 s^2 + \left| x \right| \left| s \right| - \left(k_{21} + k_{22} \right) \left| x \right|^2 = -k_1 s^2 - k_{21} \left| x \right|^2 + \left(\left| s \right| - k_{22} \left| x \right| \right) \left| x \right| \\ \dot{V} &\le -k_1 s^2 - k_{21} \left| x \right|^2 + \left(\left| s \right| \right) \frac{\left| s \right|}{k_{22}} = -\left(k_1 - \frac{1}{k_{22}} \right) s^2 - k_{21} \left| x \right|^2 \end{split}$$

Choose
$$k_1 > \frac{1}{k_{22}}; k_{21} > 0$$

3. (20 pts) Given the following system:

$$\dot{x}_1 = 2x_1 + u$$

Design a tracking controller u so that the state x_1 follows x_{1d} .

Assume that the desired trajectory and the first derivative exists and is bounded.

Show V and \dot{V} for your control design and that all signals are bounded.

$$\dot{x}_1 = 2x_1 + u$$

$$e = x_{1d} - x_1$$

$$\dot{e} = \dot{x}_{1d} - \dot{x} = \dot{x}_{1d} - 2x_1 - u$$

$$V = \frac{1}{2}e^2$$

$$\dot{V} = e\dot{e} = e(\dot{x}_{1d} - 2x_1 - u)$$

$$\operatorname{design} u = \dot{x}_{1d} - 2x_1 + ke$$

$$\dot{V} = -e^2$$

V is PD, radially unbounded, \dot{V} is ND $\Rightarrow e \rightarrow 0$

$$e \to 0 \Rightarrow x_1 \to x_{1d}$$
, x_{1d} bounded $\Rightarrow x_1$ is bounded

$$e \rightarrow 0$$
, x_1 is bounded, \dot{x}_{1d} bounded $\Rightarrow u$ is bounded

 \dot{x}_1 is bounded, u is bounded $\Rightarrow \dot{x}_1$ is bounded

4. (10pts) You have started to design a tracking controller, u(t), for the system: $\ddot{x} = a\dot{x} + bx + c + u$ The desired trajectory, x_d , and the first two derivatives exist and are bounded.

Starting with
$$V = \frac{1}{2}e^2 + \frac{1}{2}r^2$$

you specified
$$u = \ddot{x}_d - \alpha \dot{e} - a\dot{x} - bx - c + r + e$$

to yield
$$\dot{V} = -\alpha e^2 - r^2$$
.

Finish this design by proving that the controller will work and that all signals remain bounded.

V is *PD* and radially unbounded, \dot{V} is ND $\Rightarrow r \rightarrow 0, e \rightarrow 0 \Rightarrow$ the controller achieves the tracking objective $e \rightarrow 0, x_d$ is bounded $\Rightarrow x$ is bounded

since
$$e, r \rightarrow 0 \implies \dot{e} \rightarrow 0$$

 $\dot{\mathbf{e}} \rightarrow 0, \dot{x}_d$ is bounded $\Rightarrow \dot{x}$ is bounded

 \ddot{x}_d is bounded, $\dot{e} \to 0$, \dot{x} is bounded, x is bounded, $x \to 0$, $x \to 0$

⇒ all signals remain bounded

5. (20 pts) Design a tracking controller, u(t), for the system:

$$\left(x^2 + 1\right)\dot{x} = -x + u$$

Assume that the desired trajectory, x_d , and the first derivative exists and is bounded.

Just show V and \dot{V} for your design (I will interpret the result from the correct V and \dot{V} , i.e. don't worry about stating result or showing boundedness of signals).

$$\dot{x} = -\frac{x}{\left(x^2 + 1\right)} + \left(\frac{1}{x^2 + 1}\right)u$$

$$e = x_d - x$$

$$\dot{e} = \dot{x}_d - \dot{x} = \dot{x}_d + \frac{x}{(x^2 + 1)} - \left(\frac{1}{x^2 + 1}\right)u$$

$$V = \frac{1}{2}e^2$$

$$\dot{V} = e\dot{e} = e\left(\dot{x}_d + \frac{x}{\left(x^2 + 1\right)} - \left(\frac{1}{x^2 + 1}\right)u\right)$$

design
$$u = (x^2 + 1)\left(\dot{x}_d + \frac{x}{(x^2 + 1)} + ke\right)$$

$$\dot{V} = -e^2$$

6. (10 pts) Fill in the 4 blank steps below.

You are designing an observer for \dot{x} in the system

$$\ddot{x} = a\sin(x) + bx + c\cos(x) + u$$

where a,b, and c are known constants.

$$\tilde{x} = x - \hat{x}$$

$$s = \dot{\tilde{x}} + \alpha \tilde{x}$$
 so that $\dot{s} = \ddot{\tilde{x}} + \alpha \dot{\tilde{x}} = \ddot{x} - \dot{\hat{x}} + \alpha \dot{\tilde{x}}$

Propose
$$V = \frac{1}{2}\tilde{x}^2 + \frac{1}{2}s^2$$

$$\dot{V} = \ddot{x}\dot{\tilde{x}} + s\dot{s} = \ddot{x}\dot{\tilde{x}} + s\left(\ddot{x} - \dot{\tilde{x}} + \alpha\dot{\tilde{x}}\right)$$

rearrange definition of s: $\dot{\tilde{x}} = s - \alpha \tilde{x}$

$$\dot{V} = \tilde{x}(s - \alpha \tilde{x}) + s(\ddot{x} - \ddot{\hat{x}} + \alpha \dot{\tilde{x}})$$

$$= -\alpha \tilde{x}^2 + s\tilde{x} + s\left(\ddot{x} - \dot{\hat{x}} + \alpha \dot{\tilde{x}}\right)$$

Substitute the open-loop system (\ddot{x}):

$$\dot{V} = -\alpha \tilde{x}^2 + s\tilde{x} + s\left(a\sin(x) + bx + c\cos(x) + u - \ddot{\hat{x}} + \alpha \dot{\tilde{x}}\right)$$

You would like to have \dot{V} be negative definite (ND), design $\ddot{\hat{x}}$ to make this happen:

$$\ddot{\hat{x}} = a\sin(x) + bx + c\cos(x) + u + \tilde{x} + s + \alpha \dot{\tilde{x}}$$

Which makes

$$\dot{V} = \sqrt{-\alpha \tilde{x}^2 - s^2}$$

V is PD and radially unbounded, \dot{V} is ND

$$\Rightarrow \tilde{x}, s \rightarrow 0 \Rightarrow \hat{x} \rightarrow x$$

$$\Rightarrow \dot{\tilde{x}} = s - \alpha \tilde{x} \rightarrow 0 \Rightarrow \dot{\hat{x}} \rightarrow \dot{x}$$

 \Rightarrow observer is bounded if x, \dot{x} are bounded

Now arrange the observer you designed above into an implementable form.

The two-part implementation of the filter is:

$$\dot{\hat{x}} = p - (\tilde{x}) - \alpha \tilde{x} = p + (1 + \alpha) \tilde{x}$$

$$\dot{p} = a\sin(x) + bx + c\cos(x) + u - \tilde{x} - \alpha \tilde{x} = a\sin(x) + bx + c\cos(x) + u + (1+\alpha)\tilde{x}$$